NEWBOROUGH CHURCH OF ENGLAND PRIMARY SCHOOL

Calculation

 PolicyReviewed: Summer 2022
Next Review: Summer 2023

Introduction

Introduction:

This calculation policy has been written in line with the programmes of study taken from the revised National Curriculum for Mathematics (2014). It provides guidance on appropriate calculation methods and progression. The content is set out in year group blocks (guidance only) under the following headings: addition, subtraction, multiplication and division.

Aims of the Policy:

- To ensure consistency and progression in our approach to calculation
- To ensure that children develop an efficient, reliable, formal written method of calculation for all operations
- To ensure that children can use these methods accurately with confidence and understanding

How to Use This Policy:

- Use the policy as the basis of your planning but ensure you use previous or following stages' guidance to allow for personalised learning
- Always use assessment for learning to identify suitable next steps in calculation for groups of children
- If, at any time, children are making significant errors, return to the previous stage in calculation
- Always use suitable resources, models and images to support children's understanding of calculation and place value, as appropriate
- Encourage children to make sensible choices about the methods they use when solving problems

Representations:

The key to successful implementation of a school calculation policy is the consistent use of representations (model and images that support conceptual understanding of the mathematics) and this policy promotes a range of relevant representations, across the primary years. Mathematical understanding is developed through use of representations that are first concrete (e.g. Dienes apparatus, cubes), and then pictorial (e.g. array, place value counters) to then facilitate abstract working (e.g. column addition, long multiplication). This policy guides teachers through an appropriate progression of representations, and if at any point a pupil is struggling they should revert to familiar pictorial and/or concrete materials/representations as appropriate. Whilst a mathematically fluent child will be able to choose the most appropriate representation and procedure to carry out a calculation, whether written or mental, teachers should support pupils with carefully selected representations that underpin calculation methods (as detailed in this policy), and ensure there is consistency across year groups.

EYFS/ Year 1 -	dition		
Objective and Strategy	Concrete	Pictorial	Abstract
Combing to parts to make a whole: partwhole model	Use part part whole model. Use cubes to add two numbers together as a group or in a bar.		$4+3=7$ Use the part-part $10=6+4$ whole diagram as shown above to move into the abstract.
Starting at the biggest numberand counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10 This is an essentialskill for column addition later		Use pictures or a nurnber line. Regroup or partition the smaller number using the part part whole model to make 10 .	$7+4=11$ If I am at seven, how many more do I need to make 10 . How many more do I add on now?
Represent \& use number bonds and related subtraction facts within 20	2 more than 5 .		Emphasis should be on the language ' 1 more than 5 is equal to 6 .' ' 2 more than 5 is 7 .' ' 8 is 3 more than 5.'

Year 2 －Addition									
Objective and Strategy	Concrete	Pictorial	Abstract						
Adding multiples of ten	Model using dienes and bead strings	Use representations for base ten．	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$						
Use known numberfacts Part－part whole	Children ex－ plore ways of making num－ bers within 20	$\begin{gathered} 20<\square \\ \square+\square=20 \\ \square+\square=20 \\ \square=\square=\square=\square \\ \square=\square \end{gathered}$	$\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$						
Using known facts		$\begin{aligned} \because+\because & =\hat{y} \\ \\|+\\| \\| & =\\| \\| \\| \\ \text { 日a }+ \text { 日昌 } & =\text { 日昌昌 } \end{aligned}$ Children draw representations of H, T and O	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$						
Bar model	$3+4=7$	$7+3=10$	23 25 $?$ $23+25=48$						
Add a two－digit number and ones	$17+5=22$ Use ten frame to make＇magic ten Children explore the pattern． $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$		$17+5=22$ Explore related facts $\begin{aligned} & 17+5=22 \\ & 5+17=22 \\ & 22-17=5 \\ & 22-5=17 \end{aligned}$						

Add a 2 digit number and tens

Objective and Strategy	Concrete	Pictorial	Abstract
Column Addition—no regrouping Add two or three 2 or 3- digit numbers	 Model using Dienes or numicon Add together the ones first, then the tens. Move to using place value counters	Children move to drawing the counters using a tens and one frame.	$\begin{array}{r} 223 \\ +114 \\ 337 \end{array}$ Add the ones first, then the tens, then the hundreds.
Column addition with regrouping	Exchange ten ones for a ten. Model using numicon and pv counters.	Children can draw a representation of the grid to further support their understanding, carrying the ten underneath the line	

EYFS/Year 1 - Subtraction			
Objective and Strategy	Concrete	Pictorial	Abstract
Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away. $6-4=2$ $4-2=2$	$15-3=12$ Cross out drawn objects to show what has been taken away.	$7-4=3$ $16-9=7$
Counting back	- ${ }^{\circ} \mathrm{C}$ Move objects away from the group, counting backwards. Move the beads along the bead string as you count backwards.	Count back in ones using a number line.	Put 13 in your head, count back 4 . What number are you at?
Find the difference	Compare objects and amounts Lay objects to represent bar model.	Count on using a number line to find the difference.	Hannah has 12 sweets and her sister has 5. How many more does Hannah have than her sister.?

Represent and use number
bonds and related subtraction
facts within 20

Mart-Part Whole model

Year 2-Subtraction			
Objective and Strategy	Concrete	Pictorial	Abstract
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	$\begin{aligned} & 333 \\ & 20-4= \end{aligned}$	$20-4=16$
Partitioning to sub- tract without re- grouping	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping.	Children draw representations of Dienes and cross off. $43-21=22$	$43-21=22$
Make ten strategy Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	Use a bead bar or bead strings to model counting to next ten and the rest	Use a number line to count on to next ten and then the rest.	$93-76=17$

Year 3 - Subtraction			
Objective and Strategy	Concrete	Pictorial	Abstract
Column subtraction without regrouping	Use base 10 or Numicon to model	 Draw representations to support understanding	$\begin{gathered} 47-24=23 \\ -20+7 \\ -20+3 \\ \hline \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding.
Column subtraction with regrouping	Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into ten ones. Use the phrase 'take and make' for exchange.	Children may draw base ten or PV counters and cross off.	Begin by partitioning into pv columns $\begin{array}{ccc} 728 & -582 & =146 \\ \prime \prime & 7 & 2 \\ 7 & 2 & 8 \\ 5 & 8 & 2 \\ \hline 1 & 4 & 6 \\ \hline \end{array}$ Then move to formal method.

Years 4, 5 and 6-Subtraction			
Objective and Strategy	Concrete	Pictorial	Abstract
Y4 - Subtract with up to four digits	$234-179$ Model process of exchange using Numicon, base ten and then move to PV counters.	Children to draw pv counters and show their exchange-see Y3	$\begin{array}{r} 28^{\prime} 54 \\ -\quad 1562 \\ \hline 1192 \end{array}$ Use the phrase 'take and make' for exchange
Y5 - Subtract with at least four digits, including money	As Year 4	Children to draw pv counters and show their exchange-see $Y 3$	$\begin{array}{r} { }^{210 x}{ }^{\prime} 0 \not 86 \\ -\quad 2128 \\ \hline 28,928 \end{array}$ Use zeros for place- holders.
Y6 - Subtract with increasingly large and more complex numbers and decimal values			$\begin{array}{r} \text { x" } 810,699 \\ -\quad 89,949 \\ \hline 60,750 \\ \hline \quad y 35.3419 \mathrm{~kg} \\ -\quad 36.080 \mathrm{~kg} \\ \hline 69.339 \mathrm{~kg} \end{array}$

EYFS/ Year 1 - Multiplication			
Objective and Strategy	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipultives including cubes and Numicon to demonstrate doubling	Draw pictures to show how to double numbers Double 4 is 8	Partition a number and then double each part before recombining it back together.
Counting in multiples	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples. $\text { 品 } 4$	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$
Making equal groups and counting the total	Use manipulatives to create equal groups.	Draw to show $2 \times 3=6$ Draw and make repregentations	$2 \times 4=8$

Repeated addition	Use different objects to add equal groups	Use pictorial including number lines to solve problerfliere are 3 sweets in one bag. How many sweets are in 5 bags altogether?	Write addition sentences to describe objects and pictures.
Understanding arrays	Use objects laid out in arrays to find the answers to 2 lots 5,3 lots of 2 etc.	Draw representations of arrays to show understanding.	$\begin{gathered} 3 \times 2=6 \\ 2 \times 5=10 \end{gathered}$

Year 2 - Multiplication			
Objective and Strategy	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and PV counters.	Draw pictures and representations to show how to double numbers.	Partition a number and then double each part before recombining it back together.
Counting in multiples of 2, $3,4,5,10$ from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models. $5+5+5+5+5+5+5+5=40$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=?$

Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ Use an array to write rrultiplication sentences and reinforce repeated addition.
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all \& related fact family sentences.

EYFS/Year 1- Division			
Objective and Strategy	Concrete	Pictorial	Abstract
Division as sharing		Children use pictures or shapes to share quantities.	12 shared between 3 is 4.

Year 2 - Division			
Objective and Strategy	Concrete	Pictorial	Abstract
Division as sharing	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. Children use bar modelling to show and support understanding. $12 \div 4=3$	$12 \div 3=4$
Division as grouping.	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use number lines for grouping Think of the bar as 12 whioue. Splitit into the number of groups you are dividing by and work out how many would be within each group. \square $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

Year 3 - Division			
Objective and Strategy	Concrete	Pictorial	Abstract
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$ $96 \div 3=32$ () 0 0 0 0	Continue to use bar modelling to aid solving division problems. 20 \square $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$ $52 \div 4=13$ $10+3=13$	How many groups of 6 in 24? $24 \div 6=4$
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rl} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creating eight linking numbersentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \\ & 28=7 \times 4 \\ & 28=4 \times 7 \\ & 4=28 \div 7 \\ & 7=28 \div 4 \end{aligned}$

Year 4, 5 and 6	Division		
Objective and Strategy	Concrete	Pictorial	Abstract
Divide at least 3 digit numbers by 1 digit. Short Division	$96 \div 3$ Use place value counters to divide using the bus stop method alongside $42 \div 3=$ Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups. We look how much in 1 group so the answer is 14 .	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder. Move onto divisions with a remainder. 3 Finally move into decimal places to divide the total accurately. $\frac{0663}{8 \longdiv { 5 ^ { 5 } 3 ^ { 5 } 0 ^ { 2 } 9 }}$

1. Divide.	2. Multiply \& subitract.	3. Drop down the next digit.
$\begin{gathered} \frac{h t o}{1} \\ 2 \longdiv { 2 7 8 } \end{gathered}$ Two goes into 2 one time, or 2 hundreds $\div 2=1$ hundred.	$2 \begin{aligned} & \frac{1}{140} \\ & \frac{12}{2} 78 \\ & \frac{-2}{0} \end{aligned}$ Multiply $1 \times 2=2$, write that 2 under the two, and sulbtract to find the remainder of zero.	$\begin{gathered} 140 \\ 18 \\ 2 \longdiv { 2 } 7 8 \\ -\frac{1}{10} \frac{1}{7} \end{gathered}$ Next, drop down the 7 of the tens next to the zero.
Divicle.	Multiply \& subtract.	Drop down the next digit.
$\begin{gathered} h t o \\ 13 \\ 2) 278 \\ -2 \\ \hline 07 \end{gathered}$ Divide 2 into 7 . Place 3 into the quatient.	$\begin{gathered} 1410 \\ 2 \lcm{13} \\ 278 \\ -27 \\ \hline 0 \quad 6 \\ =\quad 1 \end{gathered}$ Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder of 1 tem.	Next, drop down the is of the ones next to the 1 leftover ten.
1. Divide.	2. Multiply \& subitract.	3. Drop dovan the next digit.
$\begin{array}{r} h+0 \\ 139 \\ 2) 278 \\ -27 \\ -\quad 66 \\ -\quad 18 \end{array}$ Divide 2 into 18 . Place 9 into the quotient.	$\begin{array}{r} 140 \\ 139 \\ 2 \lcm{278} \\ -27 \\ -\quad 6 \\ \hline 18 \\ -18 \\ \hline 0 \end{array}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and sulatract to find the remainger ot zero.	$\begin{array}{r} 1410 \\ 139 \\ 2 \begin{array}{r} 278 \\ -2 \\ \hline 07 \\ -\quad 6 \\ \hline-18 \\ -18 \end{array} \end{array}$ There are no mone digits to drop down. The quatient is 139 .

